CHAPITRE 7 – Fonction Carrée

I. <u>Introduction</u>

Définition

On appelle fonction carrée la fonction f définie sur **R** par :

f:
$$\mathbb{R} \longrightarrow \mathbb{R}^+ = [0; +\infty[$$
 $x \longrightarrow x^2$

II. <u>Parité</u>

Propriété

La fonction f définie sur \mathbb{R} par $f(x) = x^2$ est une fonction paire.

Démonstration

Soit f la fonction carrée définie sur \mathbb{R} par $f(x) = x^2$.

D'une part, \mathbb{R} est un ensemble symétrique par rapport à 0.

D'autre part, pour tout x de \mathbb{R} f(-x) = (-x)² = x² = f(x).

Conséquence

La courbe représentative de la fonction carrée qui à x associe x² est symétrique par rapport à l'axe des ordonnées.

La fonction carrée peut donc être étudiée sur \mathbb{R}^+ , le reste de ses caractéristiques s'en déduisant par symétrie.

III. Sens de variation et signe

Propriété

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2$.

La fonction f est strictement décroissante sur $\mathbb{R}^- =]-\infty$; 0] et strictement croissante sur $\mathbb{R}^+ = [0; +\infty[$.

La fonction f est strictement positive sur \mathbb{R}^* et nulle pour x = 0.

Démonstration

Soit f la fonction carrée définie sur \mathbb{R}^+ par $f(x) = x^2$. Soient x_1 et x_2 deux éléments de \mathbb{R}^+ tels que $x_1 < x_2$. $f(x_1) - f(x_2) = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2)$.

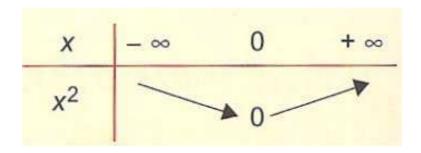
Comme $x_1 < x_2$, on sait que $x_1 - x_2 < 0$. Comme x_1 et x_2 appartiennent à \mathbb{R}^+ avec $x_1 < x_2$, $x_1 + x_2 > 0$.

D'où $(x_1 - x_2)(x_1 + x_2) < 0$ donc $f(x_1) - f(x_2) < 0$ et $f(x_1) < f(x_2)$. Pour tous réels x_1 et x_2 de \mathbb{R}^+ tels que $x_1 < x_2$, $f(x_1) < f(x_2)$. Donc la fonction f est strictement croissante sur \mathbb{R}^+ .

Par symétrie de la courbe représentative de la fonction carrée par rapport à l'axe des ordonnées, on déduit aussi que f est strictement décroissante sur \mathbb{R}^- .

Le signe se déduit de la définition d'un carré ou même des variations de la fonction vu que f(0) = 0.

Tableau de variation

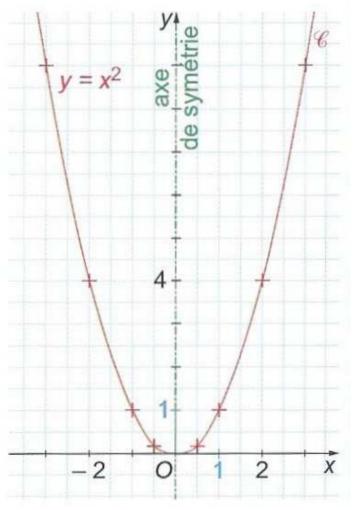


IV. Représentation graphique

Tableau de valeurs

X	0	0,5	1	2	3	4	5
$f(x) = x^2$	0	0,25	1	4	9	16	25

Courbe représentative



Remarque

La courbe représentative de la fonction carrée qui à x associe x² est appelée parabole de sommet O.