CHAPITRE 8 – Fonction Inverse

I. **Introduction**

Définition

On appelle fonction inverse la fonction f définie sur \mathbb{R}^* par :

 $lap{R}^* \longrightarrow
lap{R}$

Sens de variation et signe II.

Propriété

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

- 1) La fonction f est strictement décroissante sur $]-\infty$; 0[et sur]0; $+\infty$ [.
- 2) La fonction f est strictement négative sur] -∞; 0[et strictement positive sur $]0; + \infty[.$

Démonstration

Soient x_1 et x_2 deux éléments de \mathbb{R}^{+*} tels que $x_1 < x_2$.

$$f(x_1) - f(x_2) = \frac{1}{x_1} - \frac{1}{x_2} = \frac{x_2}{x_1 x_2} - \frac{x_1}{x_1 x_2} = \frac{x_2 - x_1}{x_1 x_2}.$$

Comme $x_1 < x_2$, on sait que $x_2 - x_1 > 0$. Comme x_1 et x_2 appartiennent à \mathbb{R}^{+*} avec $x_1 < x_2$, $x_1x_2 > 0$.

D'où
$$\frac{x_2 - x_1}{x_1 x_2} > 0$$
 donc $f(x_1) - f(x_2) > 0$ et $f(x_1) > f(x_2)$.

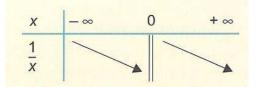
Pour tous réels x_1 et x_2 de \mathbb{R}^+ tels que $x_1 < x_2$, $f(x_1) > f(x_2)$.

Donc la fonction f est strictement décroissante sur \mathbb{R}^{+*} .

On montrerait de même que f est strictement décroissante sur \mathbb{R}^{-*} .

Le signe de f se déduit de la règle des signes d'un quotient.

Tableau de variation

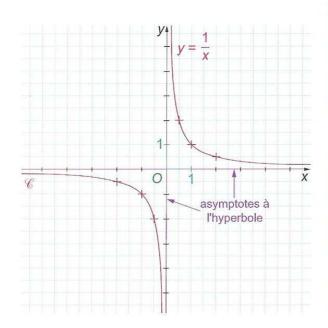


III. Représentation graphique

Tableau de valeurs

X	0,1	0,25	0,5	1	2	3	4
$f(\mathbf{v}) = \frac{1}{\mathbf{v}}$	10	4	2	1	0,5	1	0,25
I(X) = X						3	

Courbe représentative



Remarque

La courbe représentative de la fonction inverse qui à x associe $\frac{1}{x}$ est appelée une hyperbole.