CHAPITRE 3 – Théorème de Pythagore

I. <u>Carré d'un nombre, racine carrée d'un nombre positif</u>

Définition

Soit x un nombre quelconque.

Le carré de x, encore appelé x exposant 2 ou x puissance 2, est le nombre noté x^2 tel que : $x^2 = x \times x$

Exemples

$$2^2 = 2 \times 2 = 4$$
.

$$3^2 = 3 \times 3 = 9$$
.

$$7^2 = 7 \times 7 = 49$$
.

Définition

Soit y un nombre quelconque **positif**.

La racine carrée de y est le nombre **positif** dont le carré est y.

On le note \sqrt{y} et on a donc :

$$\sqrt{y} \ge 0$$
 et

$$(\sqrt{y})^2 = y$$

Exemples à connaître par coeur :

$0^2 = \frac{0}{0} \operatorname{donc} \sqrt{0} = 0$	$6^2 = \frac{36}{36}$ donc $\sqrt{36} = 6$	$12^2 = 144$ donc $\sqrt{144} = 12$
$1^2 = \frac{1}{1}$ donc $\sqrt{1} = 1$	$7^2 = \frac{49}{49}$ donc $\sqrt{49} = 7$	$13^2 = \frac{169}{169} \text{ donc } \sqrt{169} = 13$
$2^2 = \frac{4}{4} \operatorname{donc} \sqrt{4} = 2$	$8^2 = \frac{64}{4}$ donc $\sqrt{64} = 8$	$14^2 = \frac{196}{196}$ donc $\sqrt{196} = 14$
$3^2 = \frac{9}{9}$ donc $\sqrt{9} = 3$	$9^2 = 81 \text{ donc } \sqrt{81} = 9$	$15^2 = \frac{225}{225}$ donc $\sqrt{225} = 15$
$4^2 = \frac{16}{16}$ donc $\sqrt{16} = 4$	$10^2 = \frac{100}{100}$ donc $\sqrt{100} = 10$	
$5^2 = \frac{25}{25}$ donc $\sqrt{25} = 5$	$11^2 = \frac{121}{121}$ donc $\sqrt{121} = 11$	

Les nombres surlignés sont des carrés parfaits.

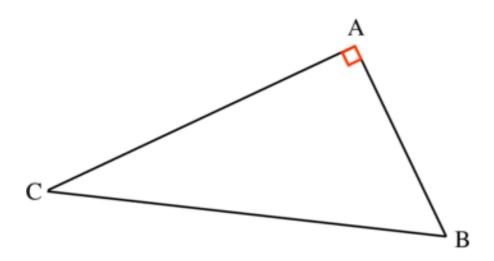
20 n'est pas un carré parfait, mais 16 < 20 < 25 donc $4 < \sqrt{20} < 5$.

II. Enoncé du théorème de Pythagore

Théorème

Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.

Illustration



Hypothèses

ABC est un triangle rectangle en A. L'hypoténuse est le côté [BC]

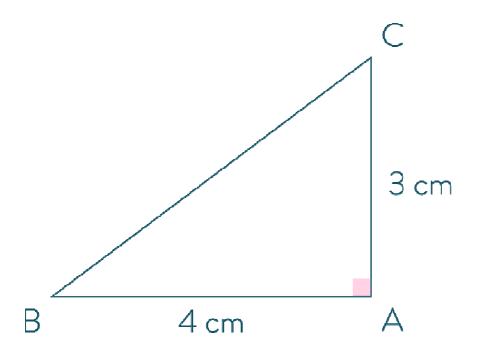
Conclusion

$$BC^2 = AB^2 + AC^2$$

III. Application 1 : calcul de la longueur d'une hypoténuse

Exemple type

Soit un triangle ABC rectangle en A. On donne AB = 4 cm et AC = 3 cm. Calculer la longueur BC.



On sait que le triangle ABC est rectangle en A. L'hypoténuse est le côté [BC].

D'après le théorème de Pythagore, on a :

$$BC^2 = AB^2 + AC^2$$

On remplace:

$$BC^2 = 4^2 + 3^2$$

$$BC^2 = 16 + 9$$

$$BC^2=25$$

$$BC = \sqrt{25}$$

$$BC = 5$$
 cm.

IV. Application 2 : calcul de la longueur d'un côté de l'angle droit

Exemple type de rédaction

Soit un triangle RST rectangle en R. On donne TS = 7 cm et RS = 4 cm. Calculer RT et arrondir au mm.

Figure à insérer.

On sait que le triangle RST est rectangle en R. L'hypoténuse est le côté [ST].

D'après le théorème de Pythagore, on a :

$$ST^2 = RS^2 + RT^2$$

On remplace:

$$7^2 = 4^2 + RT^2$$

$$49 = 16 + RT^2$$

$$RT^2 = 49 - 16$$

$$RT^2 = 33$$

$$RT = \sqrt{33}$$
 (valeur exacte)

RT \approx 5.7 cm. (valeur approchée au mm près)