FICHE DE RAPPEL 3ème - Agrandissement Réduction

I. Etude d'un exemple

Sur la figure ci-dessous, on admet que :

AMN est un triangle. B est un point de [AM] tel que AB = $\frac{2}{3}$ AM.

C est un point de [AN]. (BC) est parallèle à (MN).

Illustration à insérer (Phare page 216 haut)

Par hypothèses,
$$\widehat{ABC} = \widehat{AMN}$$
, $\widehat{ACB} = \widehat{ANM}$ et $\widehat{BAC} = \widehat{MAN}$.

D'après l'égalité des 3 rapports et les hypothèses, on a :

$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN} = \frac{2}{3}.$$

Donc : AB =
$$\frac{2}{3}$$
 AM, AC = $\frac{2}{3}$ AN et BC = $\frac{2}{3}$ MN.

Définition

On dit que le triangle ABC est une réduction du triangle AMN de rapport (ou de facteur, ou de coefficient) $k = \frac{2}{3}$.

On passe du triangle AMN au triangle ABC en conservant toutes les mesures des angles et en multipliant toutes les longueurs par $\frac{2}{3}$.

Réciproquement,
$$AM = \frac{3}{2}AB$$
, $AN = \frac{3}{2}AC$ et $MN = \frac{3}{2}BC$.

Définition

On dit que le triangle AMN est un agrandissement du triangle ABC de rapport (ou de facteur, ou de coefficient) $k = \frac{3}{2}$.

On passe du triangle ABC au triangle AMN en conservant toutes les mesures des angles et en multipliant toutes les longueurs par $\frac{3}{2}$.

Remarque

Le rapport k d'une réduction est nécessairement inférieur à 1 et celui d'un agrandissement est nécessairement supérieur à 1.

En effet, réduire signifie rendre plus petit : il faut donc multiplier chaque longueur de départ par une quantité inférieure à 1 pour y parvenir.

De même, agrandir signifie rendre plus grand : il faut donc multiplier chaque longueur de départ par une quantité supérieure à 1 pour y parvenir.

II. Agrandir ou réduire une figure

Méthode

Pour agrandir ou réduire une figure au rapport (ou facteur, ou coefficient) k, il suffit de conserver chaque mesure d'angle et de multiplier chaque longueur par le nombre k.

Exemple

ABCD est un parallélogramme tel que AB = 5 cm et BC = 4 cm. On donne également $\widehat{ABC} = 135^{\circ}$.

Illustration à insérer.

Faire une figure du parallélogramme A'B'C'D', réduction du parallélogramme ABCD de rapport 0,8.

Comme AB = 5 cm, A'B' =
$$5 \times k = 5 \times 0.8 = 4$$
 cm.
Comme BC = 4 cm, B'C' = $4 \times k = 4 \times 0.8 = 3.2$ cm.

De plus, les mesures d'angles sont conservées dans une réduction donc : $\widehat{A'B'C'} = \widehat{ABC} = 135^{\circ}$.

On en déduit la figure demandée.

Illustration à insérer.

III. Trouver un rapport d'agrandissement ou de réduction

Méthode

Pour trouver un rapport (ou un facteur, ou un coefficient) k d'agrandissement ou de réduction, il suffit souvent de faire le quotient d'une longueur après agrandissement ou réduction par la longueur dans la figure d'origine.

Exemple

ABC est un triangle rectangle en A tel que AB = 1,5 cm et AC = 2 cm.

A'B'C' est un agrandissement du triangle ABC de rapport k.

On donne B'C' = 7.5 cm.

Calculer la valeur du rapport k de l'agrandissement.

Illustration à insérer (triangle ABC rectangle en A).

On sait que le triangle ABC est rectangle en A.

L'hypoténuse est BC.

D'après le théorème de Pythagore, on a :

$$BC^2 = AB^2 + AC^2$$

On remplace:

$$BC^2 = 1,5^2 + 2^2$$

$$BC^2 = 2,25 + 4$$

$$BC^2 = 6,25$$

BC =
$$\sqrt{6,25}$$

$$BC = 2.5 \text{ cm}.$$

Donc
$$k = \frac{B'C'}{BC} = \frac{7.5}{2.5} = 3.$$

Le rapport d'agrandissement est donc de 3.